![](http://hiphotos.baidu.com/zhidao/pic/item/b999a9014c086e064db1c6fa01087bf40ad1cb62.jpg)
因為AP與⊙O相切于點(diǎn)P,所以O(shè)P⊥AP.
因為M是⊙O的弦BC的中點(diǎn),所以O(shè)M⊥BC.
于是∠OPA+∠OMA=180°.
由圓心O在∠PAC的內(nèi)部,可知四邊形M的對角互補(bǔ),
所以A,P,O,M四點(diǎn)共圓.
(Ⅱ)由(Ⅰ)得A,P,O,M四點(diǎn)共圓,所以∠OAM=∠OPM.
由(Ⅰ)得OP⊥AP.
由圓心O在∠PAC的內(nèi)部,可知∠OPM+∠APM=90°.
又∵A,P,O,M四點(diǎn)共圓
∴∠OPM=∠OAM
所以∠OAM+∠APM=90°.