精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 已知向量a=(sinθ,1),2a-b=(2sinθ-cosθ,1),則|a-b|的最大值

    已知向量a=(sinθ,1),2a-b=(2sinθ-cosθ,1),則|a-b|的最大值
    數(shù)學(xué)人氣:696 ℃時間:2020-01-29 11:54:29
    優(yōu)質(zhì)解答
    向量a=(sinθ,1),由2a-b=(2sinθ-cosθ,1),可知 向量b=(cosθ,1).a-b=(sinθ-cosθ,1-1).=sinθ-cosθ.0).|a-b|=√[(sinθ-cosθ)^2+0].|a-b|=|sinθ-cosθ|.=|√2*sin(θ-45°)|,=√2|sin(θ-45°)當(dāng)sin(θ-45°)=1...
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版