∵等差數(shù)列l(wèi)gx1,lgx2,…,lgxn的第r項(xiàng)為s,第s項(xiàng)為r(0<r<s),
∴s=lgxr=lgx1+(r-1)d,r=lgxs=lgx1+(s-1)d.
兩式相減得s-r=(r-s)d,解得d=-1.
∴l(xiāng)gx1=s+r-1,得到x1=10s+r?1.
∴l(xiāng)gxn=lgx1+(n-1)×(-1),化為xn=101?nx1.
∴x1+x2+…+xn=x1(1+
1 |
10 |
1 |
102 |
1 |
10n?1 |
1?
| ||
1?
|
10r+s |
9 |
1 |
10n |
故答案為:
10r+s |
9 |
1 |
10n |