圓心在直線y=3(x+1)上,故存在直線y=3(x+1)與所有圓都相交,選項②正確;
考慮兩圓的位置關(guān)系,
圓k:圓心(k-1,3k),半徑為
2 |
圓k+1:圓心(k-1+1,3(k+1)),即(k,3k+3),半徑為
2 |
兩圓的圓心距d=
(k-k+1)2+(3k-3k-3)2 |
10 |
兩圓的半徑之差R-r=
2 |
2 |
2 |
2 |
任取k=1或2時,(R-r>d),Ck含于Ck+1之中,選項①錯誤;
若k取無窮大,則可以認(rèn)為所有直線都與圓相交,選項③錯誤;
將(0,0)帶入圓的方程,則有(-k+1)2+9k2=2k4,即10k2-2k+1=2k4(k∈N*),
因為左邊為奇數(shù),右邊為偶數(shù),故不存在k使上式成立,即所有圓不過原點,選項④正確.
則真命題的代號是②④.
故答案為:②④