精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 求三角形中位線定理的證明過程

    求三角形中位線定理的證明過程
    就是任意一個三角形相臨兩邊的中點所在的直線與第三邊平行且是這邊的二分之1
    我知道這是定理但誰能給我個證明過程?
    最好給個圖 如果實在不好畫可以和我說操作方法我自己畫
    數(shù)學(xué)人氣:178 ℃時間:2019-10-09 08:56:03
    優(yōu)質(zhì)解答
    如圖,已知△ABC中,D,E分別是AB,AC兩邊中點.
    求證DE平行且等于1/2BC
    法一:
    過C作AB的平行線交DE的延長線于F點.
    ∵CF‖AD
    ∴∠A=ACF
    ∵AE=CE、∠AED=∠CEF
    ∴△ADE≌△CFE
    ∴DE=EF=DF/2、AD=CF
    ∵AD=BD
    ∴BD=CF
    ∴BCFD是平行四邊形
    ∴DF‖BC且DF=BC
    ∴DE=BC/2
    ∴三角形的中位線定理成立.
    法二:
    ∵D,E分別是AB,AC兩邊中點
    ∴AD=AB/2 AE=AC/2
    ∴AD/AE=AB/AC
    又∵∠A=∠A
    ∴△ADE∽△ABC
    ∴DE/BC=AD/AB=1/2
    ∴∠ADE=∠ABC
    ∴DF‖BC且DE=BC/2
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版