![](http://hiphotos.baidu.com/zhidao/pic/item/9d82d158ccbf6c812cf4e259bf3eb13532fa4044.jpg)
(2)當(dāng)m=1時(shí),△ABC為等腰直角三角形,
理由如下:如圖:
∵點(diǎn)A與點(diǎn)B關(guān)于y軸對(duì)稱,點(diǎn)C又在y軸上,
∴AC=BC,過點(diǎn)A作拋物線C1的對(duì)稱軸交x軸于D,過點(diǎn)C作CE⊥AD于E.
∴當(dāng)m=1時(shí),頂點(diǎn)A的坐標(biāo)為A(1,1+n),
∴CE=1;
又∵點(diǎn)C的坐標(biāo)為(0,n),
∴AE=1+n-n=1,
∴AE=CE;
從而∠ECA=45°,
∴∠ACy=45°,
由對(duì)稱性知∠BCy=∠ACy=45°,
∴△ABC為等腰直角三角形;
(3)假設(shè)拋物線C1上存在點(diǎn)P,使得四邊形ABCP為菱形,則PC=AB=BC.
由(2)知,AC=BC,
∴AB=BC=AC,
從而△ABC為等邊三角形.
∴∠ACy=∠BCy=30°.
∵四邊形ABCP為菱形,且點(diǎn)P在C1上,
∴點(diǎn)P與點(diǎn)C關(guān)于AD對(duì)稱,
∴PC與AD的交點(diǎn)也為點(diǎn)E,
因此∠ACE=90°-30°=60°.
∵點(diǎn)A,C的坐標(biāo)分別為A(m,m2+n),C(0,n),
∴AE=m2+n-n=m2,CE=|m|.
在Rt△ACE中,tan60°=
AE |
CE |
m2 |
|m| |
3 |
∴|m|=
3 |
3 |
故拋物線C1上存在點(diǎn)P,使得四邊形ABCP為菱形,此時(shí)m=±
3 |