∵t=1秒,
∴BP=CQ=1×1=1厘米,
∵AB=6cm,點D為AB的中點,
∴BD=3cm.
又∵PC=BC-BP,BC=4cm,
∴PC=4-1=3cm,
∴PC=BD.
又∵AB=AC,
∴∠B=∠C,
∴△BPD≌△CQP;
②假設△BPD≌△CQP,
∵vP≠vQ,
∴BP≠CQ,
又∵△BPD≌△CQP,∠B=∠C,則BP=CP=2,BD=CQ=3,
∴點P,點Q運動的時間t=
BP |
1 |
∴vQ=
CQ |
t |
3 |
2 |
(2)設經(jīng)過x秒后點P與點Q第一次相遇,
由題意,得 1.5x=x+2×6,
解得x=24,
∴點P共運動了24s×1cm/s=24cm.
∵24=2×12,
∴點P、點Q在AC邊上相遇,
∴經(jīng)過24秒點P與點Q第一次在邊AC上相遇.