2 |
x |
2 |
x2 |
2 |
x |
曲線f(x)在點(1,f(1))處的切線的斜率為f'(1)=2+2-2=2.
從而曲線f(x)在點(1,f(1))處的切線方程為y-0=2(x-1)
即y=2x-2.
(II)f′(x)=p+
p |
x2 |
2 |
x |
px2-2x+p |
x2 |
令h(x)=px2-2x+p,
要使f(x)在定義域(0,+∞)內(nèi)是增函數(shù),只需h(x)≥0在(0,+∞)內(nèi)恒成立.
由題意p>0,h(x)=px2-2x+p的圖象為開口向上的拋物線,對稱軸方程為x=
1 |
p |
∴h(x)min=p-
1 |
p |
1 |
p |
即p≥1時,h(x)≥0,f'(x)≥0
∴f(x)在(0,+∞)內(nèi)為增函數(shù),正實數(shù)p的取值范圍是[1,+∞).
(III)∵g(x)=
2e |
x |
∴x=e時,g(x)min=2;x=1時,g(x)max=2e,
即g(x)∈[2,2e],
當(dāng)p<0時,h(x)=px2-2x+p,其圖象為開口向下的拋物線,對稱軸x=
1 |
p |
所以f(x)在x∈[1,e]內(nèi)是減函數(shù).
當(dāng)p=0時,h(x)=-2x,因為x∈[1,e],所以h(x)<0,
f′(x)=-
2x |
x2 |
∴當(dāng)p≤0時,f(x)在[1,e]上單調(diào)遞減?f(x)max=f(1)=0<2,不合題意;
當(dāng)0<p<1時,由x∈[1,e]?x-
1 |
x |
1 |
x |
1 |
x |
又由(2)知當(dāng)p=1時,f(x)在[1,e]上是增函數(shù),
∴x-
1 |
x |
1 |
e |
1 |
e |
當(dāng)p≥1時,由(2)知f(x)在[1,e]上是增函數(shù),f(1)=0<2,又g(x)在[1,e]上是減函數(shù),
故只需f(x)max>g(x)min,x∈[1,e],而f(x)max=f(e)=p(e-
1 |
e |
1 |
e |
4e |
e2-1 |
綜上所述,實數(shù)p的取值范圍是(
4e |
e2-1 |