f(0+0)=f(0)+f(0),
所以f(0)=0,
令y=-x,可知f(x-x)=f(x)+f(-x)=f(0)=0,
∴f(-x)=-f(x),
所以函數(shù)f(x)為奇函數(shù).
(2)由f(1-m)+f(1-2m)<0,
∴f(1-m)<-f(1-2m),
又函數(shù)f(x)為奇函數(shù),
所以f(1-m)<f(2m-1),
又函數(shù)為單調函數(shù),且f(
1 |
3 |
log | 32 |
所以
|
解得:
2 |
3 |
∴m的取值范圍為:
2 |
3 |
1 |
3 |
1 |
3 |
log | 32 |
|
2 |
3 |
2 |
3 |