精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 已知a、b、c∈R+,求證:a^12/bc+b^12/ca+c^12/ab>=a^10+b^10+c^10,用排序不等式解答

    已知a、b、c∈R+,求證:a^12/bc+b^12/ca+c^12/ab>=a^10+b^10+c^10,用排序不等式解答
    數學人氣:526 ℃時間:2020-04-14 18:49:06
    優(yōu)質解答
    不妨設a>=b>=c,所以(a^12/bc+b^12/ca+c^12/ab)=(a^10*a^2/bc+b^10*b^2/ac+c^10*c^2/ab),然后由排序不等式得(a^10*a^2/bc+b^10*b^2/ac+c^10*c^2/ab)>=1/3*(a^10+b^10+c^10)*(a^2/bc+b^2/ac+c^2/ab)
    而(a^2/bc+b^2/ac+c^2/ab)由均值不等式得>=3,
    所以(a^12/bc+b^12/ca+c^12/ab)=(a^10*a^2/bc+b^10*b^2/ac+c^10*c^2/ab)>=1/3*(a^10+b^10+c^10)*(a^2/bc+b^2/ac+c^2/ab)>=a^10+b^10+c^10
    得證
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版