精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 求不定積分,用換元法

    求不定積分,用換元法
    1)∫1/(1+根號(hào)(1+t))dt
    2)∫根號(hào)(x^2+a^2)/xdx
    3)∫根號(hào)(x^2+2x)/x^2dx
    4)∫1/根號(hào)(e^u+1)du
    5)∫1/x*根號(hào)(a^2-b^2*x^2)dx
    6)∫根號(hào)(1+lnx)/x*lnxdx
    請(qǐng)寫出過程 謝謝
    數(shù)學(xué)人氣:829 ℃時(shí)間:2020-02-03 16:40:01
    優(yōu)質(zhì)解答
    令√(1+t)=u,得t=u²-1,dt=2udu
    ∫1/[1+√(1+t)]dt
    =∫2u/(1+u)du
    =2∫[(1+u)-1]/(1+u)du
    =2∫du-2∫1/(1+u)d(1+u)
    =2u-2ln(1+u)+C
    =2√(1+t)-2ln[1+√(1+t)]+C
    令√(x²+a²)=t,得x²=t²-a²,dx²=2tdt
    ∫√(x²+a²)/xdx
    =∫x√(x²+a²)/x²dx
    =[∫√(x²+a²)/x²dx²]/2
    =[∫2t•t/(t²-a²)dt]/2
    =∫[(t²-a²)+a²]/(t²-a²)dt
    =∫dt+a²∫1/(t²-a²)dt
    =t+aln[(t-a)/(t+a)]/2+C
    =√(x²+a²)+aln{[√(x²+a²)-a]/[√(x²+a²)+a]}/2+C
    令√(1+2/x)=u,得x=2/(u²-1),dx=-4u/(u²-1)²
    ∫√(x²+2x)/x²dx
    =∫√[4/(u²-1)²+4/(u²-1)]/[4/(u²-1)²]•[-4u/(u²-1)²]du
    =-∫u√[4+4(u²-1)/(u²-1)²]du
    =-2∫u²/(u²-1)du
    =-2∫[(u²-1)+1]/(u²-1)du
    =-2∫du-2∫1/(u²-1)du
    =ln[(1+u)/(1-u)]-2u+C
    =ln[(1+√(1+2/x))/(1-√(1+2/x))]-2√(1+2/x)+C
    此處√(1+2/x)=u經(jīng)過兩次代換
    首先令x=1/t,得dx=-1/t²dt,得到∫√(1+2t)/tdt,再令√(1+2t)=u,即√(1+2/x)=u
    令√(e^u+1)=t,得u=ln(t²-1),du=2t/(t²-1)dt
    ∫1/√(e^u+1)du
    =∫1/t•2t/(t²-1)dt
    =∫1/(t²-1)dt
    =ln[(t-1)/(t+1)]+C
    =ln[(√(e^u+1)-1)/(√(e^u+1)+1)]+C
    令x=1/t,得dx=-1/t²dt
    ∫1/x√(a²-b²x²)dx
    =-∫t/√(a²-b²/t²)•1/t²dt
    =-∫t²/√(a²t²-b²)•1/t²dt
    =-∫1/a√[t²-(b/a)²]dt
    =-ln[t+√(t²-b²/a²)]/a+C
    =-ln[1/x+√(1/x²-b²/a²)]/a+C
    =ln{ax/[a+√(a²-b²x²)]}/a+C
    令√(1+lnx)=t,得x=e^(t²-1),dx=2te^(t²-1)
    ∫√(1+lnx)/xlnxdx
    =∫t/(t²-1)e^(t²-1)•2te^(t²-1)dt
    =2∫t²/(t²-1)dt
    =2∫[(t²-1)+1]/(t²-1)dt
    =2∫dt+2∫1/(t²-1)dt
    =2t+ln[(t-1)/(t+1)]+C
    =2√(1+lnx)+ln[(√(1+lnx)-1)/(√(1+lnx)+1)]+C
    我來回答
    類似推薦
    請(qǐng)使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁(yè)提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版