∴Sn+1=2an+1-3n-3,
兩式相減,得a n+1=2an+1-2an-3,即an+1=2an+3,
∴an+1+3=2(an+3),
所以數(shù)列{bn}是以2為公比的等比數(shù)列,
由已知條件得:S1=2a1-3,a1=3.
∴首項(xiàng)b1=a1+3=6,公比q=2,
∴an=6?2n-1-3=3?2n-3.
(2)∵nan=3×n?2n-3n
∴Sn=3(1?2+2?22+3?23+…+n?2n)-3(1+2+3+…+n),
2Sn=3(1?22+2?23+3?24+…+n?2n+1)-6(1+2+3+…+n),
∴-Sn=3(2+22+23+…+2n-n?2n+1)+3(1+2+3+…+n)
=3×
2(2n-1) |
2-1 |
3n(n+1) |
2 |
∴Sn=(6n-6)?2n+6-
3n(n+1) |
2 |