則設(shè)P(x,y)為過A的切線上一點(diǎn),可得
AP |
∵
AP |
OA |
∵點(diǎn)A在圓x2+y2=r2上,可得x12+y12=r2
∴經(jīng)過點(diǎn)A的圓的切線為x1x+y1y=r2,
同理可得經(jīng)過點(diǎn)B的圓的切線為x2x+y2y=r2.
又∵點(diǎn)P(x0,y0)是兩切線的交點(diǎn),
∴可得x0x1+y0y1=r2,說明點(diǎn)A(x1,y1)在直線x0x+y0y=r2上;
同理x0x2+y0y2=r2,說明點(diǎn)B(x2,y2)在直線x0x+y0y=r2上
因此可得直線AB方程為:x0x+y0y=r2
故答案為:x0x+y0y=r2