由S△ABC=√3=√3/4*AB^2,求得邊長AB=2,又AB=2AD,∴AD=1
如圖,過A做AG⊥DE于G,則有GE=1/2DE=1/2AD=1/2
又∠BAD=45°,∠BAC=60°,∴∠CAD=15°;
又∠GAD=30°,∴∠GAF=30°-15°=15°,∴GF=AG*tan15°
易求得AG=AD*cos30°=√3/2,tan15°=tan(45°-30°)=2-√3
∴GF=AG*tan15°=(√3/2)*(2-√3)=√3-3/2
∴S△AEF=S△AEG+S△AFG
=1/2*AG*GE+1/2*AG*GF
=1/2*√3/2*(1/2+√3-3/2)
=1/2*√3/2*(√3-1)
=(3-√3)/4
![](http://b.hiphotos.baidu.com/zhidao/wh%3D600%2C800/sign=b1a1a5930cf3d7ca0ca33770c22f9231/b64543a98226cffc37945d1fb9014a90f703eae5.jpg)