精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 一道高一數(shù)學(xué)三角函數(shù)題

    一道高一數(shù)學(xué)三角函數(shù)題
    在△ABC中,已知三個內(nèi)角A、B、C滿足y=2+cosC·cos(A-B)-cos^2C
    (1)若任意交換A、B、C的位置,y的位置是否會發(fā)生變化?證明你的結(jié)論
    (2)求y的最大值
    謝謝 要有詳細的過程及講解
    數(shù)學(xué)人氣:882 ℃時間:2019-10-08 23:08:24
    優(yōu)質(zhì)解答
    (1)不會.y=2+cosC·cos(A-B)-cos^2C=2+cosC[cos(A-B)-cosC]=2+cosC[cos(A-B)+cos(A+B)]=2+2cosC·cosA·cosB
    (2)y=2+2cosC·cosA·cosB小于等于2+2(cosC+cosA+cosB)^3/27
    當(dāng)且僅當(dāng)cosC=cosA=cosB=1/2時等號成立
    所以y的最大值為2+2(1/2+1/2+1/2)^3/27=9/4
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版