1
設(shè)P點(diǎn)為(x,y),則Q點(diǎn)為(0,y),則PQ=(-x,0),而:PA=(1-x,-y),PB=(-1-x,-y)
則:PA dot PB=(1-x,-y) dot (-1-x,-y)=-(1-x^2)+y^2=x^2+y^2-1
而:|PQ|^2=PQ dot PQ=(-x,0) dot (-x,0)=x^2,所以:x^2+y^2-1+x^2=0
故所求P點(diǎn)軌跡方程是:2x^2+y^2=1
2
軌跡E是一個(gè)焦點(diǎn)在y軸上橢圓,且其長(zhǎng)軸2a=2,即a=1
題目條件:向量MC=3向量CN,說(shuō)明向量MC和向量CN同向
說(shuō)明C點(diǎn)位于橢圓內(nèi)部,否則,向量MC和向量CN反向
且C點(diǎn)縱坐標(biāo)m不等于0,否則,向量MC=向量CN
設(shè)M點(diǎn)(x1,y1),N點(diǎn)(x2,y2),則:MC=(-x1,m-y1),CN=(x2,y2-m)
則:(-x1,m-y1)=3(x2,y2-m),即:x1=-3x2,m-y1=3(y2-m),即:y1=4m-3y2
而:2x1^2+y1^2=1,2x2^2+y2^2=1,故2(x1^2-x2^2)+y1^2-y2^2=0
即:2(8x2^2)+(16m^2+9y2^2-24my2)-y2^2=0,即:2x2^2+y2^2+2m^2-3my2=0
即:2m^2-3my2+1=0,即:y2=(2m^2+1)/(3m),而直線L不能與y軸重合
所以-1
前個(gè)不等式:m<0或1/2