a1+1 |
2 |
設(shè)公差為d,則有a1+a2=2+d=S2=(
2+d |
2 |
解得d=2或d=-2(舍).
所以an=2n-1,Sn=n2.
所以 bn=(?1)n?n2.
(1)當(dāng)n為偶數(shù)時,Tn=?12+22?32+42?…+(?1)nn2
=(22-12)+(42-32)+…+[n2-(n-1)2]
=3+7+11+…+(2n?1)=
n(n+1) |
2 |
(2)當(dāng)n為奇數(shù)時,Tn=Tn?1?n2
=
(n?1)?n |
2 |
n2+n |
2 |
n(n+1) |
2 |
綜上,Tn=(?1)n?
n(n+1) |
2 |