則
NK |
KM |
MF |
FP |
PE |
EN |
∵BC截△PAE,
則
EB |
BA |
AC |
CP |
PN |
NE |
∴即有
PN |
NE |
2CP |
AC |
所以
PE |
EN |
2CP+AC |
AC |
![](http://hiphotos.baidu.com/zhidao/pic/item/d000baa1cd11728bce2d8390cbfcc3cec3fd2c7b.jpg)
∵CD截△PMA,
則
FD |
DC |
CA |
AP |
PM |
MF |
即
PM |
MF |
2AP |
AC |
PF |
MF |
2AP?AC |
AC |
因AP=AC+CP,得2CP+AC=2AP-AC,由(3),(4)得,
PE |
EN |
FP |
MF |
即
MF |
FP |
PE |
EN |
所以由(1)得NK=KM,即K是線段MN的中點.
NK |
KM |
MF |
FP |
PE |
EN |
EB |
BA |
AC |
CP |
PN |
NE |
PN |
NE |
2CP |
AC |
PE |
EN |
2CP+AC |
AC |
FD |
DC |
CA |
AP |
PM |
MF |
PM |
MF |
2AP |
AC |
PF |
MF |
2AP?AC |
AC |
PE |
EN |
FP |
MF |
MF |
FP |
PE |
EN |