nπ |
4 |
所以f(n+4)=sin( (
n+4 |
4 |
=sin(
nπ |
4 |
=-sin(
nπ |
4 |
f(n+2)=sin(
n+2 |
4 |
=sin(
nπ |
4 |
π |
2 |
=sin(
nπ |
4 |
π |
2 |
=-cos(
nπ |
4 |
f(n+6)=sin(
n+6 |
4 |
nπ |
4 |
3π |
2 |
=sin(
nπ |
4 |
π |
2 |
=-sin(
nπ |
4 |
π |
2 |
=cos(
nπ |
4 |
f(n)f(n+4)+f(n+2)f(n+6)=-sin2(
nπ |
4 |
nπ |
4 |
故答案為:-1
nπ |
4 |
nπ |
4 |
n+4 |
4 |
nπ |
4 |
nπ |
4 |
n+2 |
4 |
nπ |
4 |
π |
2 |
nπ |
4 |
π |
2 |
nπ |
4 |
n+6 |
4 |
nπ |
4 |
3π |
2 |
nπ |
4 |
π |
2 |
nπ |
4 |
π |
2 |
nπ |
4 |
nπ |
4 |
nπ |
4 |