1 |
2 |
∴Sn=2an-3n,Sn+1=2an+1-3(n+1),
兩式相減得:an+1=2an+3,
∴an+1+3=2(an+3),
∴
an+1+3 |
an+3 |
∴數(shù)列{an+3}是等比數(shù)列.
(2)∵
an+1+3 |
an+3 |
1 |
2 |
∴a1=
1 |
2 |
∴a1+3=6,
∴數(shù)列{an+3}是首項為6,公比為2的等比數(shù)列,
∴數(shù)列an+3=6?2n-1,
故an=3(2n-1).
1 |
2 |
1 |
2 |
an+1+3 |
an+3 |
an+1+3 |
an+3 |
1 |
2 |
1 |
2 |