令f′(x)=0,解得x1=0,x2=a-1.
(Ⅰ)當a=1時,f′(x)=6x2,f(x)在(-∞,+∞)上單調(diào)遞增
當a>1時,f′(x)=6x[x-(a-1)],f′(x),f(x)隨x的變化情況如下表:
![](http://hiphotos.baidu.com/zhidao/pic/item/060828381f30e924e5d512804f086e061d95f70a.jpg)
從上表可知,函數(shù)f(x)在(-∞,0)上單調(diào)遞增;在(0,a-1)上單調(diào)遞減;在(a-1,+∞)上單調(diào)遞增.
(Ⅱ)由(Ⅰ)知,
當a=1時,函數(shù)f(x)沒有極值.
當a>1時,函數(shù)f(x)在x=0處取得極大值,在450處取得極小值1-(a-1)3.