x×1+12=2x,
解得:x=12;
(2)設(shè)點(diǎn)M、N運(yùn)動(dòng)t秒后,可得到等邊三角形△AMN,如圖①,
![](http://hiphotos.baidu.com/zhidao/pic/item/9358d109b3de9c82964f91086f81800a19d8430a.jpg)
AM=t×1=t,AN=AB-BN=12-2t,
∵三角形△AMN是等邊三角形,
∴t=12-2t,
解得t=4,
∴點(diǎn)M、N運(yùn)動(dòng)4秒后,可得到等邊三角形△AMN.
(3)當(dāng)點(diǎn)M、N在BC邊上運(yùn)動(dòng)時(shí),可以得到以MN為底邊的等腰三角形,
由(1)知12秒時(shí)M、N兩點(diǎn)重合,恰好在C處,
如圖②,假設(shè)△AMN是等腰三角形,
![](http://hiphotos.baidu.com/zhidao/pic/item/18d8bc3eb13533facd9cfba9abd3fd1f41345b0a.jpg)
∴AN=AM,
∴∠AMN=∠ANM,
∴∠AMC=∠ANB,
∵AB=BC=AC,
∴△ACB是等邊三角形,
∴∠C=∠B,
在△ACM和△ABN中,
∵
|
∴△ACM≌△ABN,
∴CM=BN,
設(shè)當(dāng)點(diǎn)M、N在BC邊上運(yùn)動(dòng)時(shí),M、N運(yùn)動(dòng)的時(shí)間y秒時(shí),△AMN是等腰三角形,
∴CM=y-12,NB=36-2y,CM=NB,
y-12=36-2y,
解得:y=16.故假設(shè)成立.
∴當(dāng)點(diǎn)M、N在BC邊上運(yùn)動(dòng)時(shí),能得到以MN為底邊的等腰三角形,此時(shí)M、N運(yùn)動(dòng)的時(shí)間為16秒.