由余弦定理可知:CD^2=AD^2+AC^2-2AD*AC*cosA=(sina)^2 式1 cosA=x/3z (鄰邊比斜邊)
CE^2=EB^2+BC^2-2EB*BC*cosB=(cosa)^2 式2 cosB=y/3z(鄰邊比斜邊)
上兩等式相加,代入數(shù)據(jù)則有:2z^2+x^2+y^2-2x^2/3-2y^2/3=1
再次化簡:(x^2+y^2)/3+2z^2=1 根據(jù)勾股定理又知:x^2+y^2=AB^2=9z^2
3z^2+2z^2=1
解得 z=(根號5)/5
所以AB=3z=3*(根號5)/5
![](http://h.hiphotos.baidu.com/zhidao/wh%3D600%2C800/sign=5ea7c2fa59ee3d6d22938fcd7326411a/5bafa40f4bfbfbeda4fee72278f0f736aec31fc3.jpg)