∵AD∥BC,
∴△MAD∽△MBC,
![](http://hiphotos.baidu.com/zhidao/pic/item/d439b6003af33a878518dbabc55c10385343b50e.jpg)
∴
AD |
BC |
MA |
MB |
1 |
3 |
∴MB=3MA.設(shè)MA=2x,則MB=6x.
∴AB=4x.
∵BE=3AE,
∴BE=3x,AE=x.
∴BE=EM=3x,E為MB的中點.
又∵CE⊥AB,
∴CB=MC.
又∵MB=MC,
∴△MBC為等邊三角形.
∴∠B=60°;
(2)延長BA、CD相交于點F,如圖2:
![](http://hiphotos.baidu.com/zhidao/pic/item/5243fbf2b2119313c436240166380cd791238d0e.jpg)
∵AD∥BC,
∴△FAD∽△FBC,
∴
S△FAD |
S△FBC |
AD |
BC |
1 |
9 |
設(shè)S△FAD=S3=a,則S△FBC=9a,S1+S2=8a,
又∵2S1=3S2,
∴S1=
24 |
5 |
16 |
5 |
∵△EFC與△CEB等高,
∴
FE |
EB |
S△FEC |
S△ECB |
S3+S2 |
S1 |
7 |
8 |
設(shè)FE=7k,則BE=8k,F(xiàn)B=15k,
∴FA=
1 |
3 |
∴AE=7k-5k=2k.
∴
BE |
AE |