∴f(2)=4a+2b=0,①
∵方程f(x)-1=0,得
ax2+bx-1=0有兩個相等的實(shí)數(shù)根.
∴△=b2+4a=0 ②,
聯(lián)立①②,解得
∴a=-1或a=0(舍),
∴b=2,
∴f(x)=-x2+2x,
∴函數(shù)f(x)的解析式:f(x)=-x2+2x.
(2)任設(shè)x1,x2∈[1,+∞),且x1<x2,
則f(x1)-f(x2)=-x1 2+2x1+x22-2x2,
=(x2-x1)[2-(x1+x2)],
∵1≤x1≤x2,
∴x2-x1>0,x1+x2>2,
∴f(x1)-f(x2)>0,
∴f(x)在[1,+∞)上是減函數(shù);
(3)如圖示:
當(dāng)x=1時,函數(shù)有最大值1,
![](http://hiphotos.baidu.com/zhidao/pic/item/00e93901213fb80ef4aeb86635d12f2eb9389400.jpg)
當(dāng)x=-
1 |
2 |
5 |
4 |