精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 已知圓C過定點A(0,a) 且在x軸上截得的弦MN的長為2a

    已知圓C過定點A(0,a) 且在x軸上截得的弦MN的長為2a
    (1)求圓C的圓心的軌跡方程;
    (2)若∠MAN=45°,求圓C的方程.
    數(shù)學(xué)人氣:398 ℃時間:2020-04-09 19:37:11
    優(yōu)質(zhì)解答
    (1)設(shè)圓心 C 坐標(biāo)為(x,y),半徑 r ,
    則 r^2=CA^2=(x-0)^2+(y-a)^2 ,
    設(shè) MN 中點為 P ,則由勾股定理得 r^2=CP^2+a^2=y^2+a^2 ,
    以上兩式相減,得 x^2-2ay=0 .這就是圓心的軌跡方程.
    (2)嗯,很感謝你給我說了第一小問,但是我想問的其實是第二小問。謝謝!?。。?)設(shè)圓心坐標(biāo)為 (x,x^2/(2a)),則 M(x-a,0),N(x+a,0),因此 kAM=a/(a-x) ,kAN=a/(-a-x) ,由于∠MAN=45度,所以由 |kAM-kAN|/|1+kAM*kAN|=tan∠MAN ,得 |a/(a-x)-a/(-a-x)|/|1+a^2/(x^2-a^2)|=1 ,解得 x=±√2*a ,因此圓 C 方程為 (x+√2a)^2+(y-a)^2=2a^2 或 (x-√2a)^2+(y-a)^2=2a^2 。
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版