f(x)=∫be^[-(x+y)]dy=be^(-x),0
求U=max(x,y)
F(u)=P(U<=u)=P(max(X,Y)<=u)=P(X<=u,Y<=u)=P(X<=u)P(Y<=u)
可得U=max(x,y)的分布函數(shù)如下:
當(dāng)u<=0時(shí),F(u)=0
當(dāng)0當(dāng)1<=u時(shí),F(u)=1-e^(-u)
可得U=max(x,y)的概率密度函數(shù)如下:
f(u)=2be^(-u)*[1-e^(-u)],0f(u)=e^(-u),u>=1
f(u)=0,u取其他值
解畢