函數(shù)圖形如圖所示;
(2)不論k取何值,函數(shù)y=kx2+(2k+1)x+1的圖象必過(guò)定點(diǎn)(0,1),(-2,-1),
且與x軸至少有1個(gè)交點(diǎn).證明如下:
將x=0時(shí)代入函數(shù)中解出y=1,x=-2時(shí)代入函數(shù)中解出y=-1.
所以函數(shù)的圖象必過(guò)定點(diǎn)(0,1),(-2,-1).
又因?yàn)楫?dāng)k=0時(shí),函數(shù)y=x+1的圖象與x軸有一個(gè)交點(diǎn);
當(dāng)k≠0時(shí),
∵△=(2k+1)2-4k=4k2+1>0,所以函數(shù)圖象與x軸有兩個(gè)交點(diǎn).
所以函數(shù)y=kx2+(2k+1)x+1的圖象與x軸至少有1個(gè)交點(diǎn).
(3)只要寫(xiě)出m≤-1的數(shù)都可以.
∵k<0,
∴函數(shù)y=kx2+(2k+1)x+1的圖象在對(duì)稱(chēng)軸直線x=-
2k+1 |
2k |
根據(jù)題意,得m≤-
2k+1 |
2k |
2k+1 |
2k |
1 |
2k |
所以m≤-1.