![](http://hiphotos.baidu.com/zhidao/pic/item/dc54564e9258d109a68c1133d258ccbf6d814dc7.jpg)
∴∠ADC=105°.
由等邊△DCE可知∠CDE=60°,
故∠ADE=45°.
由AB⊥BC,AD∥BC,可得∠DAB=90°,
∴∠AED=45°.
(2)證明:由(1)知∠AED=45°,
∴AD=AE,故點A在線段DE的垂直平分線上.
由△DCE是等邊三角形得CD=CE,故點C也在線段DE的垂直平分線上.
∴AC就是線段DE的垂直平分線,即AC⊥DE.
連接AC,∵∠AED=45°,
∴∠BAC=45°,
又∵AB⊥BC,
∴∠ACB=45°,
∴BA=BC.
(3)∵∠FBC=30°,∴∠ABF=60°.
![](http://hiphotos.baidu.com/zhidao/pic/item/5243fbf2b21193132b640d0166380cd791238d58.jpg)
連接AF,BF、AD的延長線相交于點G,
∵∠FBC=30°,∠DCB=75°,
∴∠BFC=75°,故BC=BF.
由(2)知:BA=BC,故BA=BF,
∵∠ABF=60°,
∴AB=BF=FA,
又∵AD∥BC,AB⊥BC,
∴∠FAG=∠G=30°.
∴FG=FA=FB.
∵∠G=∠FBC=30°,∠DFG=∠CFB,F(xiàn)B=FG,
∴△BCF≌△GDF.
∴DF=CF,即點F是線段CD的中點.
∴
DF |
FC |