證明:(1)∵弧BP沿AP對折,圓心O恰好落在弧AP上的點(diǎn)C
∴∠BAP=∠PAC,AC=OA
∴弧PC=弧PB(同圓中,相等圓周角對應(yīng)的弧相等)
∵AC=OA=OP
∴△AOC為等邊三角形
∴∠AOC=60o,∠CAB=60o
∴∠ABC=30o(同圓中,同弧所對的圓周角等于圓心角的一半),
∠BAP=∠PAC=30o
∴弧AC=弧PC=弧PB(同圓中,相等圓周角對應(yīng)的弧相等)
(2)結(jié)論:△AOC為等邊三角形
證明過程見(1)
如圖AB是半圓的直徑AB=8,AP是半圓的弦,弧BP沿AP對折后,圓心O恰好落在弧AP上,連接BC
如圖AB是半圓的直徑AB=8,AP是半圓的弦,弧BP沿AP對折后,圓心O恰好落在弧AP上,連接BC
求證AC弧=PC弧=PB弧
提出一個關(guān)于c的問題 并進(jìn)行計(jì)算或說明
求證AC弧=PC弧=PB弧
提出一個關(guān)于c的問題 并進(jìn)行計(jì)算或說明
數(shù)學(xué)人氣:681 ℃時(shí)間:2020-03-30 20:29:46
優(yōu)質(zhì)解答
我來回答
類似推薦
- 如圖,已知點(diǎn)A是以MN為直徑的半圓上一個三等分點(diǎn),點(diǎn)B是AN的中點(diǎn),點(diǎn)P是半徑ON上的點(diǎn).若⊙O的半徑為l,則AP+BP的最小值為( ) A.2 B.2 C.3 D.52
- 如圖,AB、CD是兩條弦,且弧AD=弧BC,BP=DP.試說明弧AP=弧CP
- 如圖,AB是圓O直徑,弦CD垂直于AB,P為垂足,已知AP:BP=2:1,CD=4根號2,求AB
- 如圖,以點(diǎn)O為圓心的兩個同心圓中,大圓的弦AB是小圓的切線,點(diǎn)P為切點(diǎn).求證:AP=BP.
- 如圖,以點(diǎn)O為圓心的兩個同心圓中,大圓的弦AB是小圓的切線,點(diǎn)P為切點(diǎn).求證:AP=BP.
- 初二物理用天平和量筒測某種液體的密度
- 用雖然……可是……而且造句,
- 你認(rèn)為自然生態(tài)系統(tǒng)中,各種動物的數(shù)量能不能無限增長?為什么?
- 線性代數(shù)里矩陣在左還是在右的問題
- 數(shù)學(xué)生活中哪些地方用到 對數(shù)
- 一個平行四邊形的底于高分別為3.2分米和1.它的面積與一個梯形的面積相等,如果梯形的上底和下底分別為2.4分米和3.6分米,那么它的高是幾?
- 他爸爸愛好烹飪 翻譯His father__________________-.
猜你喜歡
- 1氯化鎂是一種鹽,.
- 2設(shè)x為正實(shí)數(shù),則函數(shù)y=x^2-x+1/x的最小值是 2.函數(shù)y=-x-9/x+18(x>0)的最大值是
- 3小紅付出200元,買了X本練習(xí)本,每本12.5元應(yīng)該找回()元.當(dāng)X=10時(shí),應(yīng)該找回()元.
- 4盒子里裝有15個球,分別寫著1~15各數(shù).如果摸到的是2的倍數(shù),則小剛贏,如果摸到的不是2的倍數(shù),則小強(qiáng)贏. (1)這樣約定公平嗎?為什么? (2)小剛一定會輸嗎?你能設(shè)計(jì)一個公平
- 5四個相同的蘋果隨機(jī)放入三個不同的盤子,有且只有一個盤子中蘋果數(shù)為2的概率是多少?
- 6有126本書,有3個書架,有6層,平均每層放幾本?
- 7850+250*(x-1)=x /2*400+x/2*200
- 8小馬虎解方程3/(2x-1)=2/(x+a)-1,去分母時(shí),方程右邊的-1忘記乘6,因而求得的解為x=4,求a與x的值
- 9He is a man with _ eyes and _ shoulders.a.wide;wide b.broad;broad c.broad;wide d.wide;broad
- 10Sunflower,you are my constant belief.
- 11一個圓錐形沙堆,底面積是31.4m2,高是1.2m,用這堆沙在10m寬的公路上鋪2cm厚的路面,能鋪多少米?
- 12his height is the same as mine.(改為同義句)