精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • (1-sin^6 a-cos^6 a)/(1-sin^4 a-cos^4 a)的化簡結(jié)果

    (1-sin^6 a-cos^6 a)/(1-sin^4 a-cos^4 a)的化簡結(jié)果
    數(shù)學(xué)人氣:886 ℃時(shí)間:2020-05-27 18:01:19
    優(yōu)質(zhì)解答
    (1-sin^6 a-cos^6 a)/(1-sin^4 a-cos^4 a)
    =[1-(sin^6 a+cos^6 a)]/[(1-sin^4 a-cos^4 a]
    =[1-(sin^2 a+cos^2 a)(sin^4 a-sin^2 acos^2 a+cos^4 a)]/[(1-sin^4 a-cos^4 a]
    =[1-(sin^4 a-sin^2 acos^2 a+cos^4 a)]/(1-sin^4 a-cos^4 a)
    =[1-sin^4 a+sin^2 acos^2 a-cos^4 a]/(1-sin^4 a-cos^4 a)
    =1+sin^2 acos^2 a/(1-sin^4 a-cos^4 a)
    =1+sin^2 acos^2 a/[(1-sin^4 a)-cos^4 a]
    =1+sin^2 acos^2 a/[(1-sin^2 a)(1+sin^2 a)-cos^4 a]
    =1+sin^2 acos^2 a/[cos^2 a(1+sin^2 a)-cos^4 a]
    =1+sin^2 acos^2 a/[cos^2 a(1+sin^2 a-cos^2a)]
    =1+sin^2 acos^2 a/[2sin^2 a*cos^2 a]
    =1+1/2
    =3/2
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版