1.a^4-4a+3
2.(a+x)^m+1*(b+x)^n-1-(a+x)^m*(b+x)^n
3.x^2+(a+1/a)xy+y^2
4.9a^2-4b^2+4bc-c^2
5.(c-a)^2-4(b-c)(a-b)
答案1.原式=a^4-a-3a+3=(a-1)(a^3+a^2+a-3)
2.[1-(a+x)^m][(b+x)^n-1]
3.(ax+y)(1/ax+y)
4.9a^2-4b^2+4bc-c^2=(3a)^2-(4b^2-4bc+c^2)=(3a)^2-(2b-c)^2=(3a+2b-c)(3a-2b+c)
5.(c-a)^2-4(b-c)(a-b)
= (c-a)(c-a)-4(ab-b^2-ac+bc)
=c^2-2ac+a^2-4ab+4b^2+4ac-4bc
=c^2+a^2+4b^2-4ab+2ac-4bc
=(a-2b)^2+c^2-(2c)(a-2b)
=(a-2b-c)^2
1.x^2+2x-8
2.x^2+3x-10
3.x^2-x-20
4.x^2+x-6
5.2x^2+5x-3
6.6x^2+4x-2
7.x^2-2x-3
8.x^2+6x+8
9.x^2-x-12
10.x^2-7x+10
11.6x^2+x+2
12.4x^2+4x-3
解方程:(x的平方+5x-6)分之一=(x的平方+x+6)分之一
十字相乘法雖然比較難學,但是一旦學會了它,用它來解題,會給我們帶來很多方便,以下是我對十字相乘法提出的一些個人見解.
1、十字相乘法的方法:十字左邊相乘等于二次項系數(shù),右邊相乘等于常數(shù)項,交叉相乘再相加等于一次項系數(shù).
2、十字相乘法的用處:(1)用十字相乘法來分解因式.(2)用十字相乘法來解一元二次方程.
3、十字相乘法的優(yōu)點:用十字相乘法來解題的速度比較快,能夠節(jié)約時間,而且運用算量不大,不容易出錯.
4、十字相乘法的缺陷:1、有些題目用十字相乘法來解比較簡單,但并不是每一道題用十字相乘法來解都簡單.2、十字相乘法只適用于二次三項式類型的題目.3、十字相乘法比較難學.
5、十字相乘法解題實例:
1)、 用十字相乘法解一些簡單常見的題目
例1把m²+4m-12分解因式
分析:本題中常數(shù)項-12可以分為-1×12,-2×6,-3×4,-4×3,-6×2,-12×1當-12分成-2×6時,才符合本題
因為 1 -2
1 ╳ 6
所以m²+4m-12=(m-2)(m+6)
例2把5x²+6x-8分解因式
分析:本題中的5可分為1×5,-8可分為-1×8,-2×4,-4×2,-8×1.當二次項系數(shù)分為1×5,常數(shù)項分為-4×2時,才符合本題
因為 1 2
5 ╳ -4
所以5x²+6x-8=(x+2)(5x-4)
例3解方程x²-8x+15=0
分析:把x²-8x+15看成關(guān)于x的一個二次三項式,則15可分成1×15,3×5.
因為 1 -3
1 ╳ -5
所以原方程可變形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x²-5x-25=0
分析:把6x²-5x-25看成一個關(guān)于x的二次三項式,則6可以分為1×6,2×3,-25可以分成-1×25,-5×5,-25×1.
因為 2 -5
3 ╳ 5
所以 原方程可變形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
2)、用十字相乘法解一些比較難的題目
例5把14x²-67xy+18y²分解因式
分析:把14x²-67xy+18y²看成是一個關(guān)于x的二次三項式,則14可分為1×14,2×7, 18y²可分為y.18y , 2y.9y , 3y.6y
解: 因為 2 -9y
7 ╳ -2y
所以 14x²-67xy+18y²= (2x-9y)(7x-2y)
例6 把10x²-27xy-28y²-x+25y-3分解因式
分析:在本題中,要把這個多項式整理成二次三項式的形式
解法一、10x²-27xy-28y²-x+25y-3
=10x²-(27y+1)x -(28y²-25y+3) 4y -3
7y ╳ -1
=10x²-(27y+1)x -(4y-3)(7y -1)
=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)
5 ╳ 4y - 3
=(2x -7y +1)(5x +4y -3)
說明:在本題中先把28y²-25y+3用十字相乘法分解為(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解為[2x -(7y -1)][5x +(4y -3)]
解法二、10x²-27xy-28y²-x+25y-3
=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y
=[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y
=(2x -7y+1)(5x -4y -3) 2 x -7y 1
5 x - 4y ╳ -3
說明:在本題中先把10x²-27xy-28y²用十字相乘法分解為(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解為[(2x -7y)+1] [(5x -4y)-3].
例7:解關(guān)于x方程:x²- 3ax + 2a²–ab -b²=0
分析:2a²–ab-b²可以用十字相乘法進行因式分解
x²- 3ax + 2a²–ab -b²=0
x²- 3ax +(2a²–ab - b²)=0
x²- 3ax +(2a+b)(a-b)=0 1 -b
2 ╳ +b
[x-(2a+b)][ x-(a-b)]=0 1 -(2a+b)
1 ╳ -(a-b)
所以 x1=2a+b x2=a-b
5-7(a+1)-6(a+1)^2
=-[6(a+1)^2+7(a+1)-5]
=-[2(a+1)-1][3(a+1)+5]
=-(2a+1)(3a+8);
-4x^3 +6x^2 -2x
=-2x(2x^2-3x+1)
=-2x(x-1)(2x-1);
6(y-z)^2 +13(z-y)+6
=6(z-y)^2+13(z-y)+6
=[2(z-y)+3][3(z-y)+2]
=(2z-2y+3)(3z-3y+2).
比如...x^2+6x-7這個式子
由于一次冪x前系數(shù)為6
所以,我們可以想到,7-1=6
那正好這個式子的常數(shù)項為-7
因此我們想到將-7看成7*(-1)
于是我們作十字相成
x +7
x -1
的到(x+7)·(x-1)
成功分解了因式
3ab^2-9a^2b^2+6a^3b^2
=3ab^2(1-3a+2a^2)
=3ab^2(2a^2-3a+1)
=3ab^2(2a-1)(a-1)
5-7(a+1)-6(a+1)^2
=-[6(a+1)^2+7(a+1)-5]
=-[2(a+1)-1][3(a+1)+5]
=-(2a+1)(3a+8);
-4x^3 +6x^2 -2x
=-2x(2x^2-3x+1)
=-2x(x-1)(2x-1);
6(y-z)^2 +13(z-y)+6
=6(z-y)^2+13(z-y)+6
=[2(z-y)+3][3(z-y)+2]
=(2z-2y+3)(3z-3y+2).
比如...x^2+6x-7這個式子
由于一次冪x前系數(shù)為6
所以,我們可以想到,7-1=6
那正好這個式子的常數(shù)項為-7
因此我們想到將-7看成7*(-1)
于是我們作十字相成
x +7
x -1
的到(x+7)·(x-1)
成功分解了因式
3ab^2-9a^2b^2+6a^3b^2
=3ab^2(1-3a+2a^2)
=3ab^2(2a^2-3a+1)
=3ab^2(2a-1)(a-1)
x^2+3x-40
=x^2+3x+2.25-42.25
=(x+1.5)^2-(6.5)^2
=(x+8)(x-5).
⑹十字相乘法
這種方法有兩種情況.
①x^2+(p+q)x+pq型的式子的因式分解
這類二次三項式的特點是:二次項的系數(shù)是1;常數(shù)項是兩個數(shù)的積;一次項系數(shù)是常數(shù)項的兩個因數(shù)的和.因此,可以直接將某些二次項的系數(shù)是1的二次三項式因式分x^2+(p+q)x+pq=(x+p)(x+q) .
②kx^2+mx+n型的式子的因式分解
如果如果有k=ac,n=bd,且有ad+bc=m時,那么kx^2+mx+n=(ax+b)(cx+d).
圖示如下:
a b
×
c d
例如:因為
1 -3
×
7 2
-3×7=-21,1×2=2,且2-21=-19,
所以7x^2-19x-6=(7x+2)(x-3).
十字相乘法口訣:首尾分解,交叉相乘,求和湊中
⑶分組分解法
分組分解是解方程的一種簡潔的方法,我們來學習這個知識.
能分組分解的方程有四項或大于四項,一般的分組分解有兩種形式:二二分法,三一分法.
比如:
ax+ay+bx+by
=a(x+y)+b(x+y)
=(a+b)(x+y)
我們把ax和ay分一組,bx和by分一組,利用乘法分配律,兩兩相配,立即解除了困難.
同樣,這道題也可以這樣做.
ax+ay+bx+by
=x(a+b)+y(a+b)
=(a+b)(x+y)
幾道例題:
1. 5ax+5bx+3ay+3by
解法:=5x(a+b)+3y(a+b)
=(5x+3y)(a+b)
說明:系數(shù)不一樣一樣可以做分組分解,和上面一樣,把5ax和5bx看成整體,把3ay和3by看成一個整體,利用乘法分配律輕松解出.
2. x3-x2+x-1
解法:=(x3-x2)+(x-1)
=x2(x-1)+(x-1)
=(x-1)(x2+1)
利用二二分法,提公因式法提出x2,然后相合輕松解決.
3. x2-x-y2-y
解法:=(x2-y2)-(x+y)
=(x+y)(x-y)-(x+y)
=(x+y)(x-y+1)
利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然后相合解決.
758²—258² =(758+258)(758-258)=1016*500=508000
求值的公式
求值的公式
形如 a2-b2=(a+b))(a-b)這些.急用.
形如 a2-b2=(a+b))(a-b)這些.急用.
數(shù)學人氣:649 ℃時間:2020-02-06 05:43:12
優(yōu)質(zhì)解答
我來回答
類似推薦
- 我要初一下的數(shù)學計算題,不要太簡單的我要用公式的或者化簡求值的
- sin(kπ-α)*cos〔(k-1)π-α〕/sin〔(k+1)π+α〕*cos(kπ+α) ,k屬于Z
- 求 2sin160°-cos170°-tan160°sin170° 的值
- 先化簡,再求值:(x+2/x2-2x-x-1/x2-4x+4)÷x2-16x2+4x,其中x=2+3.
- 再求值
- father went to his doctor for __ about his heart trouble.
- 4×27.5÷2x=8 4分之3-5分之1x=20% 怎么解這兩個方程
- 怎么用鍵盤輸入根號,圓周率等數(shù)學符號呢?
- x(x+1)(x-1)=120
- 把一個分數(shù)的分子擴大到原來的5倍,分母縮小為原來的五分之一,這個分數(shù)的值就()
- 設A(-1,0)、B(1,0),直線L1、L2分別過A、B兩點,且L1、L2的斜率之積為-4,求L1與L2的交點的軌跡方程?
- 癟乒乓球放入熱水鼓起的原因時熱脹冷縮還是溫度變化導致壓強增大
猜你喜歡
- 1英語翻譯
- 2遞等式計算如下(有2題,)
- 3請看看
- 4英語翻譯
- 5一道關(guān)于勻變速直線運動的高一物理題
- 6描寫三峽山陡水窄的句子是什么?
- 7成語,( )以名(
- 8甲乙兩個修路隊合修一條路,甲先修了全長的4/5,少4千米,接著乙修的長度是甲的一半,就全部修完了,乙隊
- 9獵豹的平均速度約是31.4米/秒,羚羊的平均速度是23.4米/秒.如果現(xiàn)在一只羚羊在一只獵豹前39米處開始逃跑,那么這只獵豹經(jīng)過多長時間可以追上這只羚羊?(得數(shù)保留整數(shù))
- 1013和7的最大公因數(shù)是多少?
- 11心事沉重,吃不下飯用什么詞語表示
- 12據(jù)測算,每10平方米的樹林明年可以吸收空氣中的有害氣體40克,某市計劃營造一條35000平方米的林帶,造成一年可以吸收多少千克有害氣體?