∵在等腰△ABC中,∠B和∠C的平分線相交于點O,
∴等腰△ABC關(guān)于線段AO所在的直線對稱,
∵∠A=80°,
∴∠OAC=40°
(2)∵BO、CO分別平分∠ABC和∠ACB,
∴∠OBC=
1 |
2 |
1 |
2 |
∴∠BOC=180°-(∠OBC+∠OCB)
=180°-(
1 |
2 |
1 |
2 |
=180°-
1 |
2 |
=180°-
1 |
2 |
=90°+
1 |
2 |
∴當(dāng)∠A=80°時,
∠BOC=180°?
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |