∴(n-1)an=Sn-1+n(n-1)(n≥2)
兩式相減可得,nan+1-(n-1)an=Sn-Sn-1+2n
即nan+1-(n-1)an=an+2n,(n≥2)
整理可得,an+1=an+2(n≥2)(*)
由a1=2,可得a2=S1+2=4,a2-a1=2適合(*)
故數(shù)列{an}是以2為首項,以2為公差的等差數(shù)列,由等差數(shù)列的通項公式可得,an=2+(n-1)×2=2n
(2)由(1)可得,Sn=n(n+1),
∴bn=
Sn |
2n |
n(n+1) |
2n |
由數(shù)列的單調(diào)性可知,bk≥bk+1,bk≥bk-1
|
b2=b3=
3 |
2 |
由bn≤t恒成立可得t≥
3 |
2 |
3 |
2 |