∴∠ODC=∠OCD=45°.
∵∠DOC=2∠ACD=90°,
∴∠ACD=45°.
∴∠ACD+∠OCD=∠OCA=90°.
∵點(diǎn)C在圓O上,
∴直線AC是圓O的切線.
(2)方法1:∵OD=OC=2,∠DOC=90°,
∴CD=2
2 |
∵∠ACB=75°,∠ACD=45°,
∴∠BCD=30°,
作DE⊥BC于點(diǎn)E,則∠DEC=90°,
∴DE=DCsin30°=
2 |
∵∠B=45°,
∴DB=2.
方法2:連接BO
∵∠ACB=75°,∠ACD=45°,
∴∠BCD=30°,∴∠BOD=60°
∵OD=OB=2
∴△BOD是等邊三角形
∴BD=OD=2.