利用公式lga^b=blga知:
lg25=2lg5,lg9=2lg3,lg2倍根號2=(3/2)*lg2
log2^25*log3^2倍根號2*log5^9 (利用loga^b=lga/lgb,化成同底形式)
=[(lg25)/lg2]*[(lg2倍根號2)/lg3]*lg9/lg5(分母與分母乘,分子與分子乘)
=[2lg5*(3/2)lg2*2lg3]/[lg2*lg3*lg5]
=2*(3/2)*2=6
log2^25*log3^2倍根號2*log5^9=
log2^25*log3^2倍根號2*log5^9=
數(shù)學(xué)人氣:874 ℃時間:2019-08-26 07:22:36
優(yōu)質(zhì)解答
我來回答
類似推薦
- log4^25-2log4^10+log2^9×log3^根號5×log5^2
- 高中對數(shù)log2(9)*log3(根號5)*log5(2)
- (log3 4+log3 8)(log2 3+log2 9)+(log3 根號2)(log9 7)/(log1/3 7)(log三次根號4 8)
- (log3^4+log5^2)(log2^9+log2^根號3)
- 0.25^(-1)*(根號3/2)^(1/2)*(27/4)^(1/4)+log2(1/5)*log3(1/8)*log5(1/9)
- 衛(wèi)星運(yùn)動軌道問題
- 已知5x+12y=60,求根號(x-4)^2+y^2的最小值
- 求幫助一道初一的數(shù)學(xué)題. 感謝
- 請仿照春最后3段以理想為話題寫一段話
- isn't the dolphin clever?怎么回答?
- 如圖,已知,△ABC和△ADE均為等邊三角形,BD、CE交于點(diǎn)F. (1)求證:BD=CE; (2)求銳角∠BFC的度數(shù).
- 若log底數(shù)2[log底數(shù)3(log底數(shù)4)]
猜你喜歡