當(dāng)n=1時(shí),a1=2a1+1-4,可得a1=3.a(chǎn)n+1=Sn+1-Sn=2an+1+(n+1)2-4(n+1)-2an-n2+4n,
可得an+1=2an-2n+3.
可得a2=7,a3=13.
(Ⅱ)由an+1=2an-2n+3可得,
an+1?2(n+1)+1 |
an?2n+1 |
2an?2n+3?2(n+1)+1 |
an?2n+1 |
2an?4n+2 |
an?2n+1 |
又a1-2×1+1=2.
所以數(shù)列{an-2n+1}是首項(xiàng)為2,公比為2的等比數(shù)列.
(Ⅲ)由(Ⅱ)可得,an-2n+1=2n.
所以an=2n-1+2n.
又Sn=2an+n2-4n,
可得Sn=2n+1+n2-2.