精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 設(shè)n為正整數(shù),且3n+1與5n-1都是平方數(shù).

    設(shè)n為正整數(shù),且3n+1與5n-1都是平方數(shù).
    求證⑴7n+13為合數(shù)⑵8(17n²+3n)為兩個(gè)平方數(shù)之和
    數(shù)學(xué)人氣:476 ℃時(shí)間:2019-10-03 21:13:50
    優(yōu)質(zhì)解答
    (1) 一個(gè)完全平方數(shù)被8除余0,1,4(分別對(duì)應(yīng)4m,奇數(shù),4m+2,m為自然數(shù)),既然5n-1是平方數(shù),則n只能為奇數(shù)或8m+2,同樣由3n+1為平方數(shù)排除8m+2(此時(shí)3n+1被8除余6),因此n為奇數(shù),7n+13為大于2的偶數(shù),必然為合數(shù).
    (2) 記3n+1=a^2,5n-1=b^2 a^2+b^2=8n 4a^2+b^2=17n+3
    8(17n^2+3n)=8n(17n+3)
    =(a^2+b^2)(4a^2+b^2)=4a^4+5a^2b^2+b^4=(2a^2+b^2)^2+(ab)^2
    我來(lái)回答
    類似推薦
    請(qǐng)使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁(yè)提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版