已知數(shù)列{an}為等差數(shù)列,Sn為其前n項和,a1+a5=6,S9=63. (1)求數(shù)列{an}的通項公式an及前n項和Sn; (2)數(shù)列{bn}滿足:對?n∈N*,bn=2an,求數(shù)列{an?bn}的前n項和Tn.
已知數(shù)列{an}為等差數(shù)列,Sn為其前n項和,a1+a5=6,S9=63.
(1)求數(shù)列{an}的通項公式an及前n項和Sn;
(2)數(shù)列{bn}滿足:對?n∈N*,bn=2an,求數(shù)列{an?bn}的前n項和Tn.
優(yōu)質(zhì)解答
(1)∵S
9=63,∴9a
5=63,解得a
5=7.
∵a
1+a
5=6,∴a
1=-1,
∴d=
=2,
∴a
n=2n-3,
Sn=n2?2n.
(2)∵a
n=2n-3,
bn=2an,
∴
bn=22n?3,
∴a
n?b
n=(2n-3)?2
2n-3,
Tn=?1?2?1+1?21+3?23+5?25+…+(2n-3)?2
2n-3,
4T
n=-1×2
1+1?2
3+3?2
5+…+(2n-5)?2
2n-3+(2n-3)?2
2n-1,
兩式相減,得:-3T
n=-
+2(2+23+25+…+22n?3)?(2n?3)?22n?1=-
+2??(2n?3)?22n?1=
,
Tn=.
我來回答
類似推薦