∴∠ABE=∠CBD,
EB |
BD |
AB |
BC |
| ||
2 |
∴△ABE∽△CBD;
(2)∵∠ACB=∠EDB=90°
∴點(diǎn)B、D、C、E四點(diǎn)共圓,
∠CDE=∠CBE,∠CBD=∠ABE;
∵△ABC、△DEB為等腰直角三角形,
∴∠ABC=∠EBD=45°,
∠ABC=∠ABE+∠EBC,
∠EBD=∠EBC+∠CBD,
得,∠CBD=∠ABE,
又∵∠CBD=∠ABE,
∴∠CBD+∠EBC=∠ABE+∠EBC=45°,
∴∠CDB+∠ABD=180°,
∴CD∥AB.
EB |
BD |
AB |
BC |
| ||
2 |