則A1、A2、A3獨(dú)立,且
B0=
. |
A1 |
. |
A2 |
. |
A3 |
B1=A1
. |
A2 |
. |
A3 |
. |
A1 |
. |
A3 |
. |
A1 |
. |
A2 |
B2=A1A2
. |
A3 |
. |
A1 |
. |
A2 |
B3=A1A2A3,
于是,
P(B0)=(1-0.4)×(1-0.5)×(1-0.7)=0.09,
P(B1)=0.4×(1-0.5)×(1-0.7)+(1-0.4)×0.5×(1-0.7)+(1-0.4)×(1-0.5)×0.7=0.36,
P(B2)=0.4×0.5×(1-0.7)+(1-0.4)×0.5×0.7+0.4×(1-0.5)×0.7=0.41,
P(B3)=0.4×0.5×0.7=0.14.
依題意有:
P(H|B0)=0,P(H|B1)=0.2,P(H|B2)=0.6,P(H|B3)=1,
于是,由全概公式有:
P(H)=
3 |
![]() |
i=0 |
=0.09×0+0.36×0.2+0.41×0.6+0.14×1
=0.458.