精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 數(shù)學(xué)數(shù)列題.

    數(shù)學(xué)數(shù)列題.
    在數(shù)列an中,a1=1,a(n+1)-(n+1)=2(an-1),bn=an+n
    (1)求證bn是等比數(shù)列
    (2)求數(shù)列{(2n-1)/(an+log2bn)}的前n項(xiàng)和Sn.
    謝謝.
    數(shù)學(xué)人氣:271 ℃時間:2020-09-30 06:56:31
    優(yōu)質(zhì)解答
    (1)
    a(n+1) -(n+1) = 2(an -1)
    a(n+1) =2an +n-1
    a(n+1) + (n+1) = 2(an + n )
    {an + n } 是等比數(shù)列,q=2
    bn = an +n 是等比數(shù)列
    (2)
    an + n = 2^(n-1) .( a1+ 1)
    = 2^n
    an = -n+2^n
    bn = an+n = 2^n
    let
    S = 1.(1/2)^0 +2.(1/2)^1+.+n.(1/2)^(n-1) (1)
    (1/2)S = 1.(1/2)^1 +2.(1/2)^2+.+n.(1/2)^n (2)
    (1)-(2)
    (1/2)S =[ 1+1/2+.+1/2^(n-1)] - n.(1/2)^n
    = 2[1- 1/2^n] - n.(1/2)^n
    S = 4[1- 1/2^n] - 2n.(1/2)^n
    cn ={(2n-1)/(an+logbn)}
    = (2n-1)/2^n
    = n(1/2)^(n-1) - 1/2^n
    Sn = c1+c2+...+cn
    = S - 2(1- 1/2^n)
    =2[1- 1/2^n] - 2n.(1/2)^n
    = 2 - (2n+2) (1/2)^n
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版