數(shù)列{bn}滿足bn=lnan,b3=18,b6=12,
∴a3=a1q2=eb3=e18,
a6=a1q5=eb6=e12,
∴
a6 |
a3 |
e12 |
e18 |
解得q=e-2,a1=
a3 |
q2 |
e18 |
e?4 |
∴{an}的通項公式為an=e22?(e?2)n?1=e24-2n,
∵數(shù)列{bn}滿足bn=lnan,
bn=lne24?2n=24-2n,
當(dāng)n=12時,bn=0
則當(dāng)n≥12時,bn<0
∴{bn}的前n項和Sn取最大值時,n=12,
∴Sn的最大值是S12=
12 |
2 |
故答案為:132.