精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 已知{an}是公比為正數(shù)的等比數(shù)列,且1/a2+1/a3+1/a4=117,a1*a2*a3=1/3^6,求 lim(a1+a2+a3+.+an)

    已知{an}是公比為正數(shù)的等比數(shù)列,且1/a2+1/a3+1/a4=117,a1*a2*a3=1/3^6,求 lim(a1+a2+a3+.+an)
    數(shù)學(xué)人氣:588 ℃時(shí)間:2019-12-20 16:36:27
    優(yōu)質(zhì)解答
    因?yàn)閍1*a2*a3=1/3^6,所以a2^3=1/3^6,所以a2=1/91/a2+1/a3+1/a4=(1+1/q+1/q^2)/a2=117,所以(1+1/q+1/q^2)=13解得q=1/3(負(fù)值舍去),所以a1=1/3所以a1+a2+a3+.+an=a1(1-q^n)/(1-q)=1/3*(1-1/3^n)/(1-1/3)=(1-1/3^n)/2l...
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版