f(x)=x^2-alnx
f'(x)=2x-a/x>=0
af(x1)≥2bg(x2)-1/(x2)²+4b√(x2)f(x1)>=2bg(x2)- [1/ (x2)^2] +4b√(x2) 吧?
0
0
所以:-1<=g(x)<0
h(x)=2bg(x)-1/x^2+4b√x
=2bx-4b√x-1/x^2+4b√x
=2bx-1/x^2
當f(x)取得最小值1時:f(x1)>=1>=h(x)=2bx-1/x^2
h(x)在(0,1]上恒成立
2bx<=1+1/x^2
2b<=1/x+1/x^3
因為:1/x和1/x^3在x>0時都是單調(diào)遞減函數(shù)
所以:x=1時取得最小值1/x+1/x^3=1/1+1/1^3=2
所以:2b<=2
解得:b<=1