精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 證明關(guān)于向量x的方程A*Ax=A*b一定有解.

    證明關(guān)于向量x的方程A*Ax=A*b一定有解.
    其中A是一個(gè)相應(yīng)的矩陣,A*是A的轉(zhuǎn)置(上標(biāo)打不出T),b是一個(gè)相應(yīng)的向量.求英文詳細(xì)證明.
    英語(yǔ)人氣:868 ℃時(shí)間:2020-06-20 04:00:39
    優(yōu)質(zhì)解答
    Let T(A) be the transpose of the matrix A.
    In order to prove that T(A) Ax = T(A) b has a non-trivial solution,we need to show that T(A) A is invertible.
    [ | | | | ]
    Assume A has the form:A = [ a_1 a_2 a_3 ...a_n ],a_1,a_2,a_3 ...a_n are the
    [ | | | | ]
    column vectors of A.
    [ - a_1 - ]
    Then T(A) = [ - a_2 - ]
    [ .]
    [ - a_n -]
    thus by definition:
    [ - a_1 - ]
    T(A)A = [ - a_2 - ] [ | | | | ]
    [ .] [ a_1 a_2 a_3 ...a_n ]
    [ - a_n -] [ | | | | ]
    [ a_1 * a_1 a_1 * a_2 ...a_1 * a_n ]
    = [ a_2 * a_1 a_2 * a_2 ...a_2 * a_n ]
    [ .]
    [ a_n * a_1 a_n * a_2 ...a_n * a_n ]
    If the column vectors of A are linearly independent,then there does not exist real numbers h and f such that:
    a_i = h * a_j + f * a_k,for any i not equal to j and i not equal to k.
    Hence,we can further investigate the entries in T(A)A:since a_i and a_j are always linearly independent,then it follows that each column of T(A)A must also be linearly independent,otherwise the column vectors of A would be linearly dependent.
    This indicates that T(A)A is invertible,thus we have one unique solution.
    In the other case,if the column vectors of A is linearly dependent,then by the same reason,column vectors of T(A)A is also linearly dependent,then we have a infinite many solutions.
    Thus,in general the system T(A)Ax = T(A)b always have solutions.
    我來(lái)回答
    類似推薦
    請(qǐng)使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁(yè)提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版