精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 已知平面向量a,b,c滿足|a|=|b|=1,向量a,b的夾角為120度,=60度,則|c|的取值范圍是?

    已知平面向量a,b,c滿足|a|=|b|=1,向量a,b的夾角為120度,=60度,則|c|的取值范圍是?
    數(shù)學人氣:301 ℃時間:2019-11-05 19:53:37
    優(yōu)質解答
    1≤|c|≤2
    用向量的方法太繁了;
    用四點共圓做的,圓的直徑為2,
    |a-b|=√(a^2+b^2-2ab)=√3
    =60
    =120
    PA=a
    PB=b
    PC=c
    四點,PACB共圓;
    1≤|PC|≤2R
    在三角形PAB中,由正弦定理;
    √3/sin120=2R==>r=1
    1≤|PC|≤2 ,即
    1≤|c|≤2
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版