由不等式x2cosC+4xsinC+6≥0對(duì)一切實(shí)數(shù)x恒成立,
∴△=16sin2C-24cosC≤0,cosC>0,化為2cos2C+3cosC-2≥0,
解得cosC≥
1 |
2 |
又0<C<π,當(dāng)cosC=
1 |
2 |
π |
3 |
(2)角C取得最大值時(shí)為
π |
3 |
∵a=2b,根據(jù)正弦定理可得sinA=2sinB,
∴sin(
2π |
3 |
3 |
3 |
4 |
∴a=2b,∴B<A,∴cosB=
| ||
2 |
∴B=
π |
6 |
1 |
2 |
1 |
2 |
π |
3 |
π |
3 |
2π |
3 |
3 |
3 |
4 |
| ||
2 |
π |
6 |