(2)利用等弧所對的圓周角相等,∠BAD=∠CBD再等量代換得出∠DBE=∠DEB,從而證明DB=DE=DC,所以B,E,C三點在以D為圓心,以DB為半徑的圓上.
證明:(1)∵AD為直徑,AD⊥BC,
∴ BD^=CD^
∴BD=CD.
(2)B,E,C三點在以D為圓心,以DB為半徑的圓上.
理由:由(1)知: BD^=CD^,
∴∠BAD=∠CBD,
又∵BE平分∠ABC,∴∠CBE=∠ABE,
∵∠DBE=∠CBD+∠CBE,∠DEB=∠BAD+∠ABE,∠CBE=∠ABE,
∴∠DBE=∠DEB,
∴DB=DE.
由(1)知:BD=CD
∴DB=DE=DC.
∴B,E,C三點在以D為圓心,以DB為半徑的圓上