(1)函數(shù)f(x)的定義域?yàn)椋?,+∞),
f′(x)=+a?2a2x=
?=-
①當(dāng)a=0時(shí),f(x)=lnx,在(0,+∞)上單調(diào)遞增,函數(shù)無極值;
②當(dāng)a>0,令f′(x)=0,得
x1=?,
x2=,且x
1<0<x
2,當(dāng)x∈(0,
)時(shí),f′(x)>0,f(x)單調(diào)遞增,當(dāng)
x∈(,+∞)時(shí),f′(x)<0,f(x)單調(diào)遞減;
當(dāng)
x=時(shí)f(x)有極小值為
f()=ln;
③當(dāng)a<0,令f′(x)=0,得
x1=?,
x2=,且x
2<0<x
1,當(dāng)x∈(0,
?)時(shí),f′(x)>0,f(x)單調(diào)遞增,當(dāng)
x∈(?,+∞)時(shí),f′(x)<0,f(x)單調(diào)遞減;當(dāng)
x=?時(shí),f(x)有極小值
f(?)=ln(?)?.
(2)由(1)知當(dāng)a>0,時(shí)f(x)在(
,+∞)上單調(diào)遞減,∴
≤1,得a≥1,當(dāng)a<0時(shí),f(x)在(
?,+∞)上單調(diào)遞減,∴
?≤1,得
?≤a<0,
綜上得:a的取值范圍為[
?,0)∪[1,+∞).